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SUMMARY

The application of the Cartesian cut cell approach in the numerical simulation of two-dimensional viscous
free surface flows is described. The Arbitrary Lagrangian–Eulerian method is adopted to update the
moving free water surface in a semi-Lagrangian scheme, in which a finite volume method of second-order
accuracy in space is used for solving the flow field based on an Eulerian description at each time step.
The cut cell approach is employed to track the free surface and solid boundaries across a stationary
background Cartesian grid covering the whole fluid, air and solid regions. In this approach, the cells full
of air and solid are not calculated explicitly, and apart from the fluid cells, cut cells and merged cells are
treated separately in terms of corresponding boundary conditions. In order to validate the present numerical
method, current flow past a circular cylinder at various low Reynolds numbers and wave sloshing in a
rectangular container are tested first. Further numerical results are obtained for the propagation of regular
waves and a wave passing over a submerged dike. The model is also applied to the simulation of radiation
waves induced by a forced oscillating submerged circular cylinder. The results indicate that the present
numerical model using the Cartesian cut cell approach is highly efficient for solving the wave fields, and
fully automatic for generating boundary fitted meshes. These features are particularly useful for moving
boundary problems in a larger computational domain and with a longer simulation time. Copyright q
2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Considerable research effort has been devoted to developing numerical models for free surface
flows over the last three decades. Generally speaking, two kinds of numerical models have been
proposed to investigate this problem. One is developed on the basis of the inviscid and irrotational
flow assumption, and the resulting Laplace equation is solved by means of the well-established
boundary or finite element methods. For example, Bai and Eatock Taylor [1, 2] simulated fully
nonlinear waves radiated by a forced oscillating cylinder, wave propagation in a wave tank and
wave diffraction around a cylinder using a higher-order boundary element method. The alternative
finite element method was used by Turnbull et al. [3], Wu and Hu [4] for investigations of wave
diffraction problems. In addition, Grilli et al. [5] and Xue et al. [6] calculated three-dimensional
overturning waves in a numerical wave tank. It has been shown that the potential flow model is able
to describe unsteady gravity waves of finite amplitude, which can be simulated accurately with all
nonlinear effects and without any significant damping. However, this type of model cannot predict
rotational velocity fields and the effects of viscosity or turbulence due to its inherent assumptions.

In parallel with the rapid growth of computer power, the other model employing the Navier–
Stokes or Euler equations without further simplification has been applied more and more widely.
It seems that solutions to the unsteady Navier–Stokes or Euler equations, including a fully nonlinear
free surface description, have usually suffered from relatively large numerical errors which do
not allow accurate long-term simulations of water waves. At the same time, the accuracy of the
simulation depends on calculating the correct position of the air/water interface throughout the wave
motion, and this becomes especially difficult when the wave overturns and merges with the water
surface or when the interface breaks up into spray. Therefore, the development of increasingly
accurate and efficient numerical models for viscous free surface waves remains a challenge.

Various techniques by which to predict the position of a moving free water surface can be
divided roughly in two distinct categories: interface capturing and interface tracking. Interface
capturing is based on the solution of the equations in a fixed-in-time domain, and usually the
interface is achieved either by following massless particles introduced into the liquid phase near
the free surface initially or by solving a transport equation for the void fraction of the liquid phase.
The volume of fluid method [7–9], the MAC method [10, 11] and the level set method [12] are the
most generally used methods of interface capturing. Moreover, Qian et al. [13] and Gao et al. [14]
developed a conservative, fully coupled numerical algorithm to simulate free surface flows based
on the solution of the density distribution in the whole computational domain directly. Interface
capturing can easily handle much distorted free surface profiles including jets and spray at solid
boundaries and breaking waves. The major drawbacks of this method are its tendency to smear
the interface and the high CPU cost due to the need for fine grids and small time steps.

On the other hand, interface tracking is based on a moving mesh approach. The arbitrary
Lagrangian–Eulerian (ALE) method is an example of interface tracking [15, 16] in which the
grid points are moved independently of the fluid motion to obtain elements of proper shape to
avoid overly distorted meshes. It gives qualitatively accurate free surface shapes and it is easy
to implement the free surface boundary conditions. However, the mesh usually deforms severely
as the free surface moves, making remeshing necessary at almost all time steps, and a robust
remeshing algorithm is therefore essential for the success of the ALE method. Determination of
the mesh velocity is another major problem with the ALE method. Different techniques have been
developed for updating the mesh, depending on the fluid domain. For problems involving simple
domains, the mesh velocity can be deduced through a uniform or non-uniform distribution of
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nodes along straight lines ending at the moving boundaries [17, 18]. For general computational
domains, the mesh velocity can be computed through partial differential equations with appropriate
boundary conditions [19, 20].

From the above discussion, it may be observed that a fixed Cartesian grid is usually used in
interface capturing; hence, problems associated with grid generation are avoided. In addition, this
method can exploit the simplicity and availability of well-established flow solvers developed for
fixed structured grids. On the other hand, a boundary-conforming grid arrangement adopted in
interface tracking is convenient and accurate; the free surface boundary conditions are applied at
the exact locations without any smearing or redistribution. These attributes provide the motivation
for the present work: to achieve a combination of the best features of the interface capturing and
interface tracking methods. In this paper, the flow field is solved on a fixed structured Cartesian grid,
and the free water surface overlying the fixed grid is explicitly tracked using the semi-Lagrangian
method and a Cartesian cut cell grid.

The Cartesian cut cell approach is an effective alternative to the traditional structured and
unstructured grids. In this approach, solid regions are simply cut out of a stationary background
Cartesian mesh, and their boundaries are represented by different types of cut cells. As a result, the
union of all solid cells, fluid cells and partially cut cells comprises a single Cartesian mesh. The cut
cell mesh generation is relatively straightforward through calculations for the boundary segment
intersections with the background Cartesian mesh. Furthermore, moving boundaries can be easily
accommodated by recomputing cell-boundary intersections, rather than remeshing the whole flow
domain or large portions of it. This method has recently been applied successfully to the shallow
water equations [21–23], to the Boussinesq equations [24], to the Euler equations [25, 26] and
extended to deal with incompressible flows [27, 28]. However, all these previous works generated
cut cell elements only around solid bodies. In this study, the developed cut cell solver has the
capacity to tackle both fixed/moving solid bodies and free water surfaces, which means that the
air region above the free surface is treated as another type of solid body but with free surface
boundary conditions.

The present paper develops the numerical solution to the Navier–Stokes equations by means of a
cell-centered finite volume method based on a structured Cartesian grid with a colocated variables
arrangement. A second-order scheme with deferred correction is used to discretize the convective
fluxes in conjunction with a second-order central difference scheme (CDS) adopted for the diffusive
fluxes. The pressure–velocity coupling is evaluated by using the SIMPLE algorithm. Owing to the
use of the Cartesian cut cell approach, the algorithm performed at cut cells and merged cells is
adjusted accordingly to account for the influence of boundary conditions. A time-stepping scheme
is employed in the semi-Lagrangian frame to update the position of the free surface at the next time
step. Numerical results are first obtained for current flow past a circular cylinder. Next, sloshing
waves, waves generated by a piston-like wave maker and travelling waves over a submerged bar in
a two-dimensional wave tank, are simulated. Finally, new results are given for the waves induced
by a forced oscillating submerged circular cylinder. Comprehensive comparisons indicate that the
present numerical results are in satisfactory agreement with analytical or experimental data.

2. MATHEMATICAL FORMULATION

In a right-handed Cartesian coordinate system Oxy having y-axis pointing vertically upwards,
two-dimensional incompressible viscous flow is governed by the continuity equation and the
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Navier–Stokes equations,
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where u is the fluid velocity vector whose Cartesian components in the x and y directions are u
and v, respectively, � and � are the density and kinematic viscosity of the fluid, p denotes the total
pressure and g is the acceleration due to gravity. It should be noted that the definition of the origin
O is relatively arbitrary, depending on different problems considered. For free surface problems,
it is always helpful to locate the origin O on the mean water surface, in order to measure the
actual wave oscillations. One can notice that the total pressure p can be further divided into two
components: p= pH+ pD, where pH is the hydrostatic pressure defined as pH =−�gy and pD
is the dynamic pressure. By this division, the last term in Equation (3) can be eliminated, such
that the dynamic pressure becomes the unknown instead of the total pressure. For the purposes of
convenience, the dynamic pressure pD remains expressed as p in the following parts of the paper.

The flow is also subject to various boundary conditions on all surfaces of the fluid domain.
On the instantaneous free water surface, the physical condition that there will be no mass flux
across the free surface requires the surface to move and deform as a material surface, which yields
the kinematic condition in the Lagrangian form,

DX
Dt

=u (4)

where D/Dt is the usual material derivative and X denotes the position of points on the free
surface. In the ALE method, as the nodes on the free surface move along with the prescribed
velocity U rather than the fluid velocity u, the Lagrangian form of the kinematic condition can be
rewritten as

�X
�t

=u−(u−U) ·∇X (5)

where �/�t is the total derivative following the moving node; this is also referred here as the
semi-Lagrangian description. In this paper, the prescribed velocity is restricted to the horizontal
direction, and nodes are only allowed to move vertically. In addition, a single-valued height function
�(x, t) is defined to evaluate the free surface position, which has been proven to be well suited for
small or moderate non-breaking waves investigated here. By doing so, the resulting expression for
the kinematic condition is

��

�t
=v−u

��

�x
(6)

Another condition applied on the free surface is the dynamic one, which requires that the stresses
on the free surface are balanced in both normal and tangential directions. By ignoring the shear

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:69–95
DOI: 10.1002/fld



FINITE VOLUME SIMULATION OF VISCOUS FREE SURFACE WAVES 73

stress and simplifying the normal shear, as is done in many applications, the dynamic condition
used in this paper can be taken as p=�g�. We recall that p here is the dynamic pressure.

On the surfaces of rigid side walls and solid bodies slip and non-slip boundary conditions
are applied, respectively, and the fluid velocity is specified at the inlet boundary. At the outlet
boundary, the set condition should make the boundary ‘transparent’, i.e. the numerical solutions in
the inner computational region would not be affected by the outlet boundary. Many forms of far
field condition have been developed by other investigators. Here a periodic condition is introduced
at the far field boundary for current flow problems. In simulations of right travelling water waves,
an artificial damping layer on the free surface is adopted to absorb the wave energy near the
right-hand end of the wave tank. At this numerical beach, the kinematic condition is modified by
a damping term over a finite length of the free surface (Bai and Eatock Taylor [1]),

��

�t
=v−u

��

�x
−�(x)(�−�0) (7)

where �(x) is the damping coefficient and �0 is a reference value specifying the at-rest position of
a fluid particle. In practice, the damping coefficient is chosen to be continuous and continuously
differentiable. Here we have used:
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In this definition, � and � are the representative wave wavelength and wave frequency (rad/s),
respectively, and LD is the position of the far field boundary. Lastly, a Neumann-type boundary
condition needs to be introduced for the pressure on all the boundary surfaces, except at the
free surface.

3. NUMERICAL METHOD

One important advantage of the present numerical model using the Cartesian cut cell approach is
that it is possible to adopt well-tested flow solvers developed for structured Cartesian grids with
only slight modifications for the cut cells and merged cells, respectively. In this section, we only
briefly describe the cell-centered finite volume method, one well-established algorithm, for solving
the Navier–Stokes or Euler equations in a rectangular fluid domain; more details can be found in
many textbooks, such as Ferziger and Perić [29]. The cut cells and the merged cells issues will be
dealt with in the next section.

The momentum equations are discretized first on the structured fluid cells. In each rectangular
control volume (CV) P surrounding by the neighboring cells Pj ( j =1, . . . ,4), as shown in Figure 1,
the integral form of the momentum equations is obtained through Gauss’s theorem,∫

VP

�	

�t
dv+

∫
SP

	u·nds=−1

�

∫
SP

pnds+
∫
SP

�∇	·nds (9)

where 	 is the general variable denoting u or v, VP and SP are the volume and surface of CV P
respectively, and n is the normal unit vector on cell surfaces positive pointing out of CV P .
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P3: (i-1, j) P: (i, j) P1: (i+1, j)

P2: (i, j+1)

P4: (i, j-1) 

S4

S1S3

S2

Figure 1. Assignment of finite volume cells and variables.

For the unsteady term in Equation (9), an implicit three-level scheme of second-order accuracy
is adopted. A first-order upwind difference scheme (UDS) with deferred correction is simply used
to approximate the convective fluxes. Using this method, the contribution of the first-order scheme
will vanish, and second-order accuracy is achieved when the calculation is convergent. We evaluate
the diffusive fluxes using the second-order CDS. By substituting these discrete representations into
Equation (9), the final discretized momentum equations can be expressed as

a0	P +
4∑
j=1

a j	Pj
=b0 (10)
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[
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(1+0.5�) (12)

b0=
4∑
j=1

[
−1

�
p j S jn j −(u j ·n j )(	

CDS
j −	UDS

j )n−1
]
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P −0.5�	n−2
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Here, �t is the time interval, X is the position of centre nodes, p j and u j present the pressure and
velocity at the j th cell surface obtained by linear interpolation between the two adjacent nodes,
and S j denotes the area of the j th cell surface (see Figure 1). Superscript UDS and CDS stand
for the variables approximated by the first-order UDS and second-order scheme, respectively, and
superscript n−1 and n−2 denotes that the terms are evaluated using values obtained from the
previous iteration and the iteration before the previous one, respectively. In addition, �=1 indicates
the implicit three-level scheme, and �=0 corresponds to the implicit Euler scheme.

The velocity obtained from the solution to the momentum equations cannot be guaranteed
to satisfy the continuity equation, which needs to be corrected subsequently by an appropriate
algorithm. Here the SIMPLE algorithm is adopted, in which the cell surface velocity correction is
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defined based on the pressure correction. Substituting this definition into the continuity equation
leads to the discretized pressure correction equation for p′

P ,
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In these equations, superscripts p and u indicate that the corresponding coefficients are of the
pressure correction equation and the momentum equations, respectively. It should be noticed that,
as a colocated variable arrangement is adopted to store all the variables at the same set of grid
points, the velocity on the j th cell surfaces u j in Equation (15) must be determined by momentum
interpolation in order to avoid numerical instability,

u j =u j −
(

1

�au0

)
j

·[(pPj − pP)n j −(∇ p) j (XPj −XP) ·n j ]S j (16)

where the overbar means that the variables are obtained by linear interpolation based on the values
at two adjacent nodes.

After obtaining the pressure correction p′
P , the pressure and velocities can be corrected by

pP = p∗
P + p′

P , uP =u∗
P − VP

�au0
∇ p′

P (17)

where the pressure p∗
P comes from the previous iteration, and the velocity u∗

P is the solution
to the discretized momentum equations (Equation (10)). Under-relaxation is always used in the
numerical simulation to avoid divergence of the iterative procedure. For the momentum equa-
tions, under-relaxation is used directly in calculating the coefficient matrix, while for the pressure
under- relaxation is involved in the correction procedure. In this paper, the under-relaxation factors
for the pressure and velocities are chosen to be 0.4 and 0.7, respectively. The procedure discussed
above including the prediction and correction can be performed repeatedly until the numerical
error is negligibly small, which will result in converged numerical solutions to the Navier–Stokes
or Euler equations at each time step.

4. CARTESIAN CUT CELL APPROACH

A Cartesian cut cell mesh can be generated by cutting solid regions out of a background grid, and
therefore three main types of cell are formed in the computational domain, namely the cut cell,
fluid cell and solid cell, as shown in Figure 2. The algorithm discussed in the previous section
needs to be modified, in order to be suitable for a cut cell mesh. In addition, some specific aspects
related to free surface flows have to be considered. These are discussed next.
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Merged cell 

Merged cell 

Cut cell 

Fluid cell 

Solid cell 

Figure 2. Sketch of definition for the cut cell mesh.

4.1. Mesh generation

To generate a cut cell mesh, the background Cartesian grid is constructed first, which could be
either uniform or non-uniform. The geometry of the solid body is represented by a series of straight
line segments defined in an anti-clockwise direction, and the next step is to find the intersection
points between the background Cartesian grid lines and an individual line segment (see Figure 2).
Once the grid cells containing the start and end points of the line segment have been identified
and its slope computed, the required intersection points can be easily found; see Causon et al. [21]
for more details. It should be noted that the air region above the free water surface is regarded as
an individual solid body bounded by the side walls and the free surface represented by a series of
straight line segments. The same algorithm used for a solid body can also be adopted to determine
the intersection points between the free surface and the background grid lines. The cut cell method
produces a boundary conforming mesh without the necessity to make the boundary a coordinate
surface. In fact, there is no mesh generation in the conventional sense; all that is necessary is to
calculate the intersections of a series of line segments with a background Cartesian grid.

After establishing all mesh intersections, the cells that intersect the boundary of a solid body are
registered as cut cells. Sweeps across the background grid are then performed to identify which
cells or rows of cells are bounded by cut cells; these are registered as solid cells. In the domains
with free water surfaces, solid cells also include the upper part of cells above the corresponding
cell cut by the free surface in each column. We assume here that each background cell is allowed
to be cut only once, so that multiple cuts do not invalidate the data structure. When a sharp
corner is situated inside a background cell, resulting in the case of a multiple cut, the solid region
is re-defined by placing a straight line connecting the intersections with the background cell.
By doing so, the sharp corner can be approximated and only one cut is required in the cell.

Since, in practice, a cut cell can be arbitrarily small, numerical stability may be compromised
at these small cut cells. To overcome this problem cell merging is implemented. The basic idea
is to combine several neighbouring cells together so that any interfaces between merged cells are
ignored and computations can be performed at a newly combined larger cell without reducing the
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0 1 0 3

Figure 3. Illustration of east neighbour for a fluid cell (Type 0).

1 1 1 3
1

4

Figure 4. Illustration of east neighbour for a cut cell (Type 1).

global time step. To implement the cell merging technique, cells whose volumes are smaller than a
minimum volume criterion Vmin, are merged with neighbouring cells. Suitable neighbouring cells
should have the largest common interface with the merging cell. An example neighbouring cell
and merging cell are shown in Figure 2. In our calculations, Vmin is set to be one half of the fluid
cell size. The total computational domain is composed of fluid cells (Type 0), cut cells (Type 1),
solid cells (Type 2), merged cells (Type3) and small merging cells (Type 4).

4.2. Cut cells

Now, based on the definition of the five different types of cells, the algorithm developed in
the previous section can be implemented without modification at cells marked Type 0 in the
computational domain. Clearly, neighbours adjacent to a fluid cell could be a cut cell or a merged
cell. For the purposes of illustration, a typical CV surface, the east surface will be considered in
what follows; analogous situations may be derived straightforwardly for all other surfaces. Figure 3
shows these two possibilities, from which we can see that no additional treatments are necessary.

However, the cut cell and the merged cell need to be dealt with separately. For a cut cell
Type 1, the discretized equation at the j th cell surface ( j=1, . . . ,4) is based on the same algorithm
developed for a fluid cell, with the free surface or non-slip boundary conditions at the cut surface
corresponding to the free water surface or solid wall, respectively. We note that S j ( j=1, . . . ,4)
represents the area of the common interface and one or two could be zero depending on the position
of the boundary, but this does not affect the equations given in the previous section. Figure 4
shows other possibilities for the east neighbour. From this figure, we can see that whether the
east cell is a cut cell or a merged cell, the same discretized equations can be adopted without
modification. However, at the small merging cell Type 4, because we do not wish to encounter a
numerical instability issue mentioned above, a specific explicit treatment is used to avoid arranging
unknowns on it. In this case, the coefficient for the small merging cell is moved to the right-hand
side by multiplying the known value on this small cell from the previous iteration, instead of
solving it implicitly.

4.3. Merged cells

For merged cell Type 3, the situation is more complex, as shown in Figure 5 that shows possibilities
not included in Figures 3 and 4. In the first case of Figure 5, a merged cell is connected to both a
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Figure 5. Illustration of east neighbour for a merged cell (Type 3).

fluid cell and a cut cell. Generally speaking, the flux balance at the common side should involve
both the fluid cell and the cut cell; but this, of course, would destroy the structure of the resulting
algebraic equation system. We wish to retain a well-organized 5-point diagonal coefficient matrix
which can be solved very efficiently, while able to fully take advantage of the Cartesian cut
cell approach. Therefore, we avoid elements not directly adjacent to a CV being involved in the
discretized equation for the CV. The approach used here is to calculate the influence of the cut cell
in the first case of Figure 5 explicitly, and only use the unknowns in the fluid cell. For the second
case of Figure 5, a similar technique is used, in order to maintain the structure of the algorithm.
In this case, we separate a merged cell into a fluid cell or a cut cell and a small merging cell, and
calculate the small merging cell explicitly. The small merging cell in the last case of Figure 5 can
also be treated explicitly, just like that discussed for the cut cell. The introduction of merged cells
will result in some such explicit treatments, locally reducing the formal accuracy of the solver.
However, we have found this compromise between formal accuracy and numerical efficiency to
be acceptable in practice.

However, since moving boundary problems are considered here, merged cells must be used to
ensure conservation of mass. When boundaries move relative to the background grid, cells near
the moving boundaries undergo changes. If a solid cell changes to a cut cell, it is difficult to
define where the fluid originates from without using merged cells. By introducing cell merging
this difficulty is avoided. In such cases, VP in the last terms of Equations (12) and (13) should be
calculated accurately to keep the change of fluid mass continuous, based on the cell type at the
current and previous time steps.

After calculating the discretized coefficients for each individual CV, we can finally set up
a 5-point diagonal algebraic equation system for which many well-established solvers exist.
As discussed above, solid cells and small merging cells are not computed explicitly. We can,
therefore, set the coefficients for these cells as unity in the diagonal of the coefficient matrix and
zero in the right-hand-side vector. The strongly implicit procedure is applied here (see Ferziger
and Perić [29]), which has been proven to be very efficient for algebraic equation systems having
a similar structure to that established in this paper. One remaining problem is: how to determine
the values at the small merging cells. These can be simply set to those values at the corresponding
merged cell to which the small merging cell belongs.

4.4. Free surface flows

Once the flow field is obtained, the free surface boundary condition can be used to update the
position of the free surface at the next time step. The updating points are chosen to be at the centre
of the top cell surface at the appropriate cut cell or merged cell, and their velocities are simply
taken as those of the corresponding cut cell or merged cell. However, these velocities at the cut
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cell (or merged cell) are actually located at the cell centres, rather than at the cell surface. Various
extrapolation techniques of first-order and second-order accuracy can be used to reconstruct the
cell surface data, but our numerical calculations show that the practice does not improve the
numerical results significantly. In our investigations, both the fourth-order Runge-Kutta scheme
and the first-order Euler scheme are adopted for updating the free surface boundary condition
in time.

Another important issue related to free surface flows is numerical instability. It is known
that the use of merged cells will locally increase numerical errors in the calculation; this, in
conjunction with other possible numerical errors, will be present in the local position of the free
surface. The saw-tooth free surface may be induced due to the different types of adjacent cells
on the free surface, which could affect the calculation of the flow field at the next time step.
Numerical error will be magnified continuously, and sharp corners may appear on the free surface,
finally leading to the computation ceasing prematurely. To avoid numerical instability, a 5-point
smoothing technique is used to smooth the velocity and free surface every few time steps in this
paper. The smoothed values at each node i on the free surface are calculated by the formula:
fi =(− fi−2+4 fi−1+10 f i+4 fi+1− fi+2)/16, where subscripts i−2, i−1, i+1, i+2 denote the
values at corresponding neighbouring cells.

5. NUMERICAL RESULTS

In this section, five different cases are considered to validate the present numerical model.
The first case concerns current flow past a circular cylinder, and the second case is a sloshing wave
in a wave tank. The third and fourth cases simulate wave propagation in a tank and extend the
model to consider the deformation of waves travelling over a submerged bar, respectively. In order
to illustrate the moving body capability, the present numerical model is also applied to radiation
waves induced by a submerged circular cylinder undergoing forced oscillations. The numerical
results are compared with experimental data and analytical solutions.

5.1. Current flow past a circular cylinder

We first calculate the current flow past a circular cylinder at various low Reynolds numbers (Re)
which are defined on the basis of the diameter of the cylinder (D), and compare the results with
previous experimental and numerical data. The simulations are performed in a rectangular domain
20D long and 10D wide. The centre of the cylinder is located at a distance 5D from the inlet
boundary at the left hand end.

Grid convergence tests are carried out first for the case of Re=200, with three different non-
uniform meshes. Mesh 1 employs 92(x)×76(y) cells with a minimum grid size of �x=�y=
0.03D around the cylinder, and the time interval is taken as �t=0.1. Mesh 2 and Mesh 3 have
138×113 cells and 180×146 cells, where the minimum grid sizes are �x=�y=0.02D and
�x=�y=0.015D, respectively. For the last two meshes, a smaller time interval of �t=0.05
is chosen to obtain stable computations. Table I shows the numerical results including the drag
(CD) and lift (CL) coefficients, and the Strouhal number (St) that indicates the vortex shedding
frequency, obtained with these three meshes. It can be seen that the computation converges fast,
and the results obtained with Mesh 2 are very close to those using Mesh 3, thus Mesh 2 is adopted
in the following calculations for this case. The vortex shedding frequency is seen to converge the
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Table I. Hydrodynamic parameters of current flow over a circular cylinder at Re=200.

CD CL

Max. Min. Mean Amp. St

Lecointe and Piquet [30] 1.50 1.42 1.46 0.70 0.230
Franke et al. [31] — — 1.31 — 0.194
Chan and Anastasiou [32] 1.53 1.43 1.48 0.63 0.180
Chen et al. [33] 1.37 1.29 1.33 0.72 0.200
Farrant et al. [34] — — 1.37 — 0.196
Meneghini et al. [35] — — 1.30 — 0.196
Wu and Hu [36] 1.39 1.32 1.36 0.56 0.190
Present
Mesh 1 1.53 1.42 1.47 0.78 0.195
Mesh 2 1.45 1.35 1.40 0.74 0.195
Mesh 3 1.43 1.33 1.39 0.76 0.195
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Figure 6. Time history of drag and lift coefficients on the cylinder at Re=200.

fastest, and even the coarse mesh (Mesh 1) can predict very accurate St number. In addition, the
present results fall within the range of other experimental and numerical results, except that the
amplitude of the lift force is a little larger here.

The time history of the forces acting on the cylinder at Re=200 is given in Figure 6. The
calculations presented here are performed on a desktop PC with 2.8GHz CPU and 2.0GB RAM.
The CPU time required for this case is around 12h, which corresponds to 7.2s for each time
step with about 15 000 cells in the computational domain. Figure 7 shows the results for the drag
coefficient at lower Reynolds numbers under 100, and comparison with the experimental data
measured by Tritton [37]. The numerical results reported in Lei et al. [38] are also plotted in the
same figure for comparison. It can be seen that the variation of the calculated drag coefficient with
the Reynolds number agrees better with the measured data than that from Lei et al. [38] whose
values are slightly higher than the experimental data.

5.2. Wave sloshing in a rectangular container

Wave sloshing in a container under the influence of gravity is a classical test case for free surface
flow problems. In this case, the length of the container is 1m, and the free water surface has an
initial slope of 0.02 with the still water depth of 0.2m. Once the fluid begins to move under gravity,
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Figure 8. Convergence of wave elevation on the left side wall with different meshes.

there exists an infinite number of standing wave modes in the container and the analytical solution
to this problem can be found based on linear wave theory (see Lin and Li [39] for details). In this
and the following sections, viscous effects are ignored in all calculations, and the Euler scheme
is chosen to approximate the unsteady term in the momentum equations (�=0 in Equations (12)
and (13)) due to the difficulty in determining the value of 	n−2

P in Equation (13) for moving
boundary problems. At the same time, the non-uniform meshes used in all calculations employ
finer grids around the solid body surface in the horizontal direction and near the free water surface
in the vertical direction.

To investigate grid convergence, three different meshes, denoted byMesh 1,Mesh 2 andMesh 3,
using 15 ×3,30×6 and 60×12 cells, respectively, are adopted. In Figure 8, results for the position
of the interface at the left boundary against time are compared with the analytical solution, from
which we can observe that the numerical results with different meshes approach the analytical
solution gradually and a nearly convergent solution can be obtained using Mesh 2 with 180 cells
in the computational domain. We also investigate the convergence of the calculation with three
different time intervals, as shown in Figure 9. It can be found that the calculations seem to be
insensitive to the time interval, and all results are almost identical. Therefore, the time interval
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Figure 9. Convergence of wave elevation on the left side wall with different time steps.

used for all calculations in this and the following sections is taken as 0.002T , where T is the wave
period.

Figure 10 shows comparisons of the wave profiles at six time instants with the corresponding
analytical solutions. The first four frames in Figure 10 correspond to the free surfaces during one
wave period for the leading mode and the last two demonstrate how the wave behaves after a long
time simulation. From the comparisons, we can see that the numerical results agree well with the
analytical solution during the first wave period, but a little larger discrepancy appears at the last
time instant. This might be caused by accumulated errors in the numerical model or the neglect
of nonlinear effects in the analytical solutions. The overall comparisons, however, are fairly good,
indicating that the model can predict the free surface location accurately. The model is further
tested for the conservation of total mass. In Figure 11, the time history of mass normalized by the
total fluid mass at the initial time step is shown. It can be seen that the total mass discrepancy
is less than 0.15% even when the very coarse mesh is used, which can prove that the present
numerical method is conservative.

5.3. Wave generation in a wave tank

To further validate the present method, the experiment conducted by Gao [40] to investigate wave
generation and propagation in a tank is reproduced numerically. In this test, regular waves are
generated in a 8.75m long wave tank with a still water depth of 0.28m, and the velocity of the
wave paddle is prescribed to be the same as that used in the experiment. Three different meshes
are tested, whose numbers of cells are 200×7400×13 and 600×20, respectively.

During our initial numerical calculations, however, a saw-tooth instability arises leading to the
computation diverging, as seen in Figure 12 for the wave profiles along the tank at two time instants
obtained with Mesh 1. It can be seen that at t=4T the numerical instability is hardly evident,
whereas at t=8T it appears clearly near the wave paddle. A smoothing technique is therefore
applied. To check the effect of smoothing on the numerical results, two smoothing frequencies
have been used: in one wave period the smoothing technique is performed once and 2.5 times,
respectively. From the results shown in Figure 12, we find that both of these smoothing frequencies
will work efficiently. The smoothing technique can remove the numerical instability where the
saw-tooth instability appears, and it does not change the results much where the free surface is
very smooth. In addition, different smoothing frequencies seem to provide very similar results, but
frequent smoothing will of course introduce some numerical damping into the numerical results.
The principle of choosing the smoothing frequency in the following calculations is to use as little
as possible.
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Figure 10. Comparison of wave profile with analytical solution.

In Figure 13, free surface elevations at three different stations (x=0.55,3.75 and 5.45m from
the position of the wave paddle) are compared with the corresponding experimental results.
We can see that the results obtained with the coarse mesh are in good agreement with those
using the other two finer meshes at stations close to the wave paddle (x=0.55m). However, far
away from the wave paddle (x=3.75m and 5.45m) large differences appear in the results, where
numerical damping caused by the accumulation of numerical errors can be observed for the coarse
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Figure 12. Effect of the smoothing on the wave profile.

mesh. The values predicted on the two finer meshes lie close to each other at all three stations; this
indicates that a grid-independent solution is achieved by the present numerical method. It should
be noted that a large discrepancy between the present numerical results and the experimental data
is found at the station near the wave paddle, and this discrepancy becomes smaller at increasing
the distance from the wave paddle. The reason for this phenomenon is that compared with the
physical experiment, a different inlet boundary condition is used in the numerical simulation that
uses the velocity at the inlet boundary with fixed wave paddle. However, in the experiment,
the wave paddle is actually moving, which consequently affects the comparison of the results near
the wave paddle.

In order to support our explanation for the discrepancy between the numerical and experimental
results, the present numerical model is also compared with the analytical solution. Except that
the velocity at the wave paddle is calculated based on the second-order Stokes wave theory, the
geometry, the computational meshes and the generated wave condition are all the same as those
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Figure 13. Comparison of wave elevation with experimental data.

in the physical experiment. Figure 14 compares the numerical results with the analytical solutions
to the second-order Stokes wave at the same three stations. Now, we can find that they are in the
satisfactory agreement, which indicates again that the present numerical model is accurate.

5.4. Wave travelling over a submerged bar

The present numerical model is also used for simulating the propagation of regular waves
over a submerged bar on a horizontal bottom, which has been investigated numerically by
numerous authors (Lin and Li [39], Huang and Dong [41], Shen and Chan [42]). In this case,
the incoming wave on the upward slope is shoaling, with nonlinearity generating bounded higher
harmonic waves, which travel phase-locked to the primary wave. On the downward slope these
harmonic waves are released as free waves, resulting in an irregular wave pattern. In the compu-
tational domain, sketched in Figure 15, the velocity at the inlet boundary is prescribed in terms
of linear wave theory, the incident wave height is 0.02m and the wave period is 2 s. The set-up is
the same as that used in the experiment reported by Beji and Battjes [43]. There are 16 cells in
the vertical direction, and the numbers of cells in the horizontal direction are 500, 750 and 1000,
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Figure 14. Comparison of wave elevation with analytical solution for the second-order Stokes wave.

corresponding to Mesh 1, Mesh 2 and Mesh 3, respectively. For the cases in this and the next
section, the Euler scheme is adopted for updating the free surface boundary condition, which can
save computer effort compared with the Runge–Kutta scheme used before.

Figure 16 shows a comparison of free surface elevation with experimental data at six different
stations. At the first two stations, the waves remain almost sinusoidal with good agreement between
the numerical results and the experimental data, even for the coarsest mesh. At the second two
stations, where the wave rides over the top of breakwater, we find that some details of wave
signature do not completely agree with the experimental data. Behind the breakwater, the prediction
of wave transformation in this region is most difficult because of the complicated flow separation
and nonlinear wave energy transfer. Therefore, the discrepancies between the numerical results
and the experimental data become larger at the last two stations but the numerical results tend to
agree better with the experimental data when finer meshes are adopted. These discrepancies are
probably due to the neglect of viscosity and the accumulation of numerical errors caused by the
introduction of merged cells.

The numerical results for free surface profiles along the wave tank at an interval of 1s are shown
in Figure 17. It can be seen that as waves propagate over the bar, the primary wave crests become

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:69–95
DOI: 10.1002/fld



FINITE VOLUME SIMULATION OF VISCOUS FREE SURFACE WAVES 87

Still water level Wave maker 

0.4m 

0.3m 

6.0m  2.0m 3.0m 13.0m 6.0m

Figure 15. Experimental layout for wave travelling over a submerged bar.

steeper and a dispersive tail gradually develops. A small wave appears at the trailing edge of a
primary wave. Because this small wave propagates more slowly than the main crest, it gradually
detaches from the main crest and is overtaken by the next wave. Very careful examination of
Figure 17 reveals some apparent very slight saw-tooth instabilities in the wave profiles, but these
do not affect the final results of the calculations.

5.5. Wave generation by a submerged circular cylinder undergoing forced motions

Lastly, we investigate wave radiation by a submerged circular cylinder undergoing forced sinusoidal
oscillations. This is a more difficult case, because the computational domain involves both a
complicated free water surface as a domain boundary and a moving body. It may be noted that
the mesh generation for this case cannot be easily realized by mesh-moving methods, whereas
the present numerical model using the Cartesian cut cell approach can show its strong ability for
dealing with complicated moving boundary problems. The size of the rectangular tank is shown
in Figure 18 for the forced oscillation period T of 2 s, and 420×25 cells are distributed in the
computational domain. The balanced position of the submerged circular cylinder is situated on the
centre of the tank, and the radius of the circular cylinder is 0.1m.

The vertical oscillating circular cylinder is considered first. Figure 19 shows the wave profiles
excited by the submerged circular cylinder under different oscillating amplitudes a at T =2s. From
this figure, we can clearly see the process of radiated wave generation and propagation in the
tank. Because the specified excitation period is very small which corresponds to a low-frequency
oscillation, the wave crest at t=1.0T has already reduced due to gravity, before the circular
cylinder excites the next wave. Therefore, waves at higher frequency become apparent at this time
instant, and these higher-frequency waves superpose on the primary waves, leading to an irregular
wave pattern at t=3.0T . To summarize, the numerical results are very stable during the whole
simulated period, and they are symmetric about the expected symmetric plane. In addition, the
influence of higher-frequency waves becomes more marked and the resulting wave is therefore
more irregular, with the increase of the incident wave amplitude. This phenomenon can also be
seen in Figure 20, in which the time history of wave elevation at two different stations is given.
At x=7.0m, the higher-frequency waves are more visible for a=0.04m. However, at x=8.0m
where the station is situated at the top of the balanced position of the submerged circular cylinder,
the primary wave plays a dominant role.
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Figure 17. Wave profiles along the wave tank at several time instants.

Having considered vertical motion, we now simulate forced horizontal motion. Figure 21 shows
the wave profiles for two motion amplitudes at T =2s. We can see from the figure that the
characteristics of the wave system in this case are similar to those produced by the vertically
moving circular cylinder: the superposition of higher-frequency waves and primary waves causes
the resulting irregular wave. However, the distribution of the higher-frequency waves is smaller
here, and the wave travels with the typical excitation wave length approximately. The time history
of wave elevation at three different stations is also compared between these two motion amplitudes,
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Figure 18. Sketch of the computational domain for the submerged circular cylinder undergoing force
oscillations with the period T =2s.
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Figure 19. Wave profile for the submerged circular cylinder undergoing forced vertical oscillation at
T =2s with two different amplitudes.

as shown in Figure 22. The phase shift between the results at x=7.0m and x=9.0m is clear from
this figure. At x=8.0m, the free surface is nearly stationary for a=0.02m, whereas it oscillates
at double the frequency of the body motion for a=0.05m due to the stronger nonlinearity.

In order to investigate the influence of excitation period on the results, we calculate the wave
profiles induced by the circular cylinder having motion amplitude a=0.02m at three different
periods: the results can be observed in Figure 23. It should be noted that the length of the tank is
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Figure 21. Wave profile for the submerged circular cylinder undergoing forced horizontal oscillation at
T =2s with two different amplitudes.

chosen as 4� approximately for different excitation periods, where � is the wave length in terms
of linear wave theory. We can see that the disturbance of the water surface is very small at such a
low excitation frequency (t=4.0s). However, the body oscillating at higher frequency (t=1.0s)
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Figure 22. Time history of wave elevation for the submerged circular cylinder undergoing forced horizontal
oscillation at T =2s with two different amplitudes.

can induce a very large primary wave having the same frequency as the body oscillation. In this
case, the higher-frequency waves mentioned before are suppressed.

6. CONCLUSIONS

The Navier–Stokes and Euler equations have been solved for simulating flows with and without free
surfaces by using a finite volume method with the application of the Cartesian cut cell approach.
In the cut cell approach, generally speaking, the choice of the background grid is arbitrary: any
existing grid systems can be applied in generating a cut cell mesh, but the Cartesian grid adopted
here is the simplest one among others. Therefore, in principle, any existing flow solvers developed
for any grid systems can be extended conveniently to adopt the cut cell approach. Not much
additional work is required, only the introduction of corresponding boundary conditions in the
cut cells is necessary, which means that existing programs can be utilized to a maximum degree.
The cut cell approach is particularly suitable for extending existing flow solvers to investigate
moving boundary problems, such as free surface flows and fluid–body interactions. In this paper, a
number of numerical results obtained using the present cut cell model have been shown. Compre-
hensive comparisons with experimental data and analytical solutions indicate that this numerical
model is very powerful and efficient, especially for complicated moving boundary problems.
However, it should be mentioned that due to the use of merged cells in the numerical model,
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Figure 23. Wave profile for the submerged circular cylinder undergoing forced vertical oscillation with
a=0.02m and three different oscillation periods.

sometimes relatively larger numerical errors become apparent after a long time accumulation: these
possibly can be avoided by using a finer mesh in regions where a detailed velocity field needs to
be described.
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29. Ferziger JH, Perić M. Computational Methods for Fluid Dynamics. Springer: Berlin, Heidelberg, 1999.
30. Lecointe Y, Piquet J. On the use of several compact methods for the study of unsteady incompressible viscous

flow around a circular cylinder. Computer and Fluids 1984; 12:255–280.
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